43 research outputs found

    Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic Systems

    Full text link
    High-level reasoning can be defined as the capability to generalize over knowledge acquired via experience, and to exhibit robust behavior in novel situations. Such form of reasoning is a basic skill in humans, who seamlessly use it in a broad spectrum of tasks, from language communication to decision making in complex situations. When it manifests itself in understanding and manipulating the everyday world of objects and their interactions, we talk about common sense or commonsense reasoning. State-of-the-art AI systems don't possess such capability: for instance, Large Language Models have recently become popular by demonstrating remarkable fluency in conversing with humans, but they still make trivial mistakes when probed for commonsense competence; on a different level, performance degradation outside training data prevents self-driving vehicles to safely adapt to unseen scenarios, a serious and unsolved problem that limits the adoption of such technology. In this paper we propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components. We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications

    The Knowledge Level in Cognitive Architectures: Current Limitations and Possible Developments

    Get PDF
    In this paper we identify and characterize an analysis of two problematic aspects affecting the representational level of cognitive architectures (CAs), namely: the limited size and the homogeneous typology of the encoded and processed knowledge. We argue that such aspects may constitute not only a technological problem that, in our opinion, should be addressed in order to build articial agents able to exhibit intelligent behaviours in general scenarios, but also an epistemological one, since they limit the plausibility of the comparison of the CAs' knowledge representation and processing mechanisms with those executed by humans in their everyday activities. In the final part of the paper further directions of research will be explored, trying to address current limitations and future challenges

    Knowledge-driven Data Construction for Zero-shot Evaluation in Commonsense Question Answering

    Full text link
    Recent developments in pre-trained neural language modeling have led to leaps in accuracy on commonsense question-answering benchmarks. However, there is increasing concern that models overfit to specific tasks, without learning to utilize external knowledge or perform general semantic reasoning. In contrast, zero-shot evaluations have shown promise as a more robust measure of a model's general reasoning abilities. In this paper, we propose a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks. Guided by a set of hypotheses, the framework studies how to transform various pre-existing knowledge resources into a form that is most effective for pre-training models. We vary the set of language models, training regimes, knowledge sources, and data generation strategies, and measure their impact across tasks. Extending on prior work, we devise and compare four constrained distractor-sampling strategies. We provide empirical results across five commonsense question-answering tasks with data generated from five external knowledge resources. We show that, while an individual knowledge graph is better suited for specific tasks, a global knowledge graph brings consistent gains across different tasks. In addition, both preserving the structure of the task as well as generating fair and informative questions help language models learn more effectively.Comment: AAAI 202

    DataDriven and Ontological Analysis of FrameNet for Natural Language Reasoning. In

    Get PDF
    Abstract This paper focuses on the improvement of the conceptual structure of FrameNet for the sake of applying this resource to knowledgeintensive NLP tasks requiring reasoning, such as question answering, information extraction etc. Ontological analysis supported by data-driven methods is used for axiomatizing, enriching and cleaning up frame relations. The impact of the achieved axiomatization is investigated on recognizing textual entailment
    corecore